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In adaptive inverse control (AIC), adaptive inverse of the plant is used as a feed-forward controller.Majority ofAIC schemes estimate
controller parameters using the indirect method. Direct adaptive inverse control (DAIC) alleviates the adhocism in adaptive loop.
In this paper, we discuss the stability and convergence of DAIC algorithm. The computer simulation results are presented to
demonstrate the performance of the DAIC. Laboratory scale experimental results are included in the paper to study the efficiency
of DAIC for physical plants.

1. Introduction

Adaptive inverse control (AIC) is a well-established adaptive
tracking methodology [1–4]. Robust tracking and computa-
tionally less expensive characteristics of AIC have attracted
the interest of many researchers for several decades [1–15].
AIC schemes are applicable to stable or stabilized plants
[2]. AIC has been applied successfully in several practical
applications such as real-time blood pressure control, shock
testing, control of the kiln, real-time control of temperature
of a heating process, real-time speed control of a brush DC
motor, nonlinear ship maneuvering, echo cancelation, and
noise cancelation [1, 15–20]. Recently, AIC is used to control
the position of piezoelectric inchworm actuator [21] and
the acceleration of six-degree-of-freedom electrohydraulic
shaking table [22].

Discrete time plants for which one or more zeros lie
outside the unit circle are called non-minimum phase plants.
Similarly continuous time plants in which one or more zeros
lie on the right hand side of the S-plane are known as non-
minimum phase plants [23]. Discretization of continuous
time plants most often gives non-minimum phase discrete
plants [24, 25]. Numerous techniques have been developed
for the control of non-minimum phase plants. AIC based on

linear and nonlinear filtering, AIC of linear and nonlinear
systems using dynamic neural networks, Normalized Least
Means Square (NLMS) based adaptive controller, nonlinear
adaptive inverse control systems based on filtered-𝜖 Least
Mean Square (LMS) Algorithm, internal model control
structure using adaptive inverse control strategy, k-step delay
controller for robust tracking, and causal inversion solution
are few of them [5–14, 17, 26, 27]. Majority of control
schemes for non-minimum phase plants are indirect [5–
8, 11]. In some AIC schemes inverse is designed based on
identified plant [9, 10]. Most of the AIC schemes estimate
right inverse 𝑄𝑅(𝑞−1) and then it is used as left inverse
𝑄𝐿(𝑞−1) by considering left and right inverse are equal. But
they are not equal, because practical plants most often have
some kind of nonlinearities. Therefore, directly estimated
left inverse in principle accomplishes better tracking than
indirect algorithms. Since the plant and its inverse are in
cascade, they collectively form a unity gain transfer function.
Similarly the left inverse precedes plant. Right and left inverse
are shown in Figures 1(a) and 1(b), respectively.

A direct adaptive inverse technique based on NLMS for
control of discrete time linear plants to alleviate the adhocism
in adaptive loop is proposed in [1]. However, the stability
and convergence analysis is missing. A neural network based
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Figure 1

DAIC was then proposed in [28]. Reference [29] proposed
a prefilter inversion system on the similar lines of DAIC.
This DAIC structure was used for the adaptive control of
electrohydraulic servo systems. The modified DIAC scheme
was proposed for the prediction of the compression strength
of concrete using neural network based on kernel ridge
regression [30]. Another extension of the DAIC is proposed
in [31]. Based on DAIC proposed in [1], a closed loop
direct adaptive inverse control scheme is introduced in [32]
that improves tracking, error convergence, and disturbance
rejection properties of DAIC. These extensions and uses
of DAIC motivate us to provide stability and convergence
analysis of DAIC along with some applications to experi-
mental systems. In this paper, parameter estimation for plant
model and adaptive inverse controller, stability analysis, and
error convergence for DAIC is discussed thoroughly. Further,
simulation results in presence of disturbance are given in
the paper. Laboratory scale experiments are presented to
elaborate the performance of DAIC on physical plants. DAIC
can be used for tracking of stable or stabilized, minimum
or non-minimum phase discrete time linear plants. Little
modification can also establish model reference adaptive
tracking as well.

The rest of the paper is organized as follows. Section 2
presents problem statement. Section 3 discusses existing
indirect adaptive inverse control (IAIC) schemes. Design of
DAIC scheme is given in Section 4. Parameter estimation
algorithms and stability analysis for DAIC are given in
Section 5. Simulation results are presented in Section 6.
Experimental results are described in Section 7. Conclusions
are drawn in Section 8.

2. Problem Statement

Let us consider 𝑃(𝑞−1) as a discrete time stable or stabilized
linear plant, which is given by

𝑃 (𝑞−1) = 𝑞−𝑑𝐵 (𝑞−1)
𝐴 (𝑞−1) ,

𝐴 (𝑞−1) = 1 + 𝑎1𝑞−1 + 𝑎2𝑞−2 + ⋅ ⋅ ⋅ + 𝑎𝑛𝑞−𝑛,
𝐵 (𝑞−1) = 𝑏0 + 𝑏1𝑞−1 + 𝑏2𝑞−2 + ⋅ ⋅ ⋅ + 𝑏𝑚𝑞−𝑚,

(1)

where 𝑞−1 is a back shift operator defined as 𝑞−1𝑦(𝑘) =
𝑦(𝑘 − 1), 𝑘 is a positive integer that represents discrete time
instant, 𝑑 is a positive integer that represents delay of the
plant. 𝑛 and 𝑚 are positive integers, and 𝑛 ≥ 𝑚. 𝐴(𝑞−1) and

𝐵(𝑞−1) are relatively coprime polynomials. We also assume
that the plant may be non-minimum phase; that is, inverse
of plant is unstable. Let 𝑟(𝑘), 𝑦𝑑(𝑘), and 𝑦(𝑘) be the reference
input, desired output, and plant output, respectively. Further,
it is assumed that parameters of the plant are unknown or
slowly time varying compared to the adaptation algorithm.
The objective is to design a controller such that 𝑦(𝑘) tracks
𝑦𝑑(𝑘); that is,

lim
𝑘→∞

(𝑒ref (𝑘))2 = lim
𝑘→∞

(𝑦𝑑 (𝑘) − 𝑦 (𝑘))2 → 0, (2)

where 𝑦𝑑(𝑘) = 𝑟(𝑘 − 𝐿), 𝐿 is a positive integer that represents
known delay, and 𝑒ref (𝑘) is error at instant 𝑘.

3. Overview of Existing IAIC Schemes

Control scheme for linear Single Input Single Output (SISO)
plants that uses IAIC proposed in [4] is shown in Figure 2.

Right inverse 𝑄𝑅(𝑞−1) is estimated using inverse model
identification. 𝑄𝑅(𝑞−1) is then copied into feed-forward path
of plant, that is, 𝑄𝑅copy(𝑞−1). 𝐿 is considered zero in Figure 2
for controlling minimum phase plants [4]. 𝑒𝑟(𝑘) is used to
adapt theweights of adaptive filter, where 𝑒𝑟(𝑘) = 𝑦𝑖(𝑘)−𝑢(𝑘−
𝐿). 𝑦𝑖(𝑘) is output of 𝑄𝑅(𝑞−1). When 𝑒𝑟(𝑘) → 0 then 𝑒ref (𝑘)
will approach zero as well [2]. In this case, 𝑒ref (𝑘) is given by

𝑒ref (𝑘) = [𝑞−𝐿 − 𝑄𝑅copy (𝑞−1) 𝑃 (𝑞−1)] 𝑟 (𝑘) . (3)

Due to commutability of linear filters

𝑄𝑅copy (𝑞−1) 𝑃 (𝑞−1) ≅ 𝑃 (𝑞−1)𝑄𝑅 (𝑞−1) . (4)

AIC based on linear and nonlinear adaptive filtering
discussed in [5] is shown in Figure 3. 𝑀(𝑞−1) is filter with
desired response. For structure in Figure 3, (3) can be
rewritten as

𝑒ref (𝑘) = [𝑀(𝑞−1) − 𝑄𝑅copy (𝑞−1) 𝑃 (𝑞−1)] 𝑟 (𝑘) . (5)

Indirect adaptive tracking schemes discussed above prove
good for stable or stabilized plant. IAIC schemes estimate
𝑄𝑅(𝑞−1) and then it is copied in feed-forward path as left
inverse 𝑄𝐿(𝑞−1). There are situations in which 𝑄𝑅copy(𝑞−1)
may not be equal to 𝑄𝐿(𝑞−1) because of nonlinearities in the
plant. So, the use of 𝑄𝑅copy(𝑞−1) instead of 𝑄𝐿(𝑞−1) in such
situations will not accomplish tracking [2].
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Figure 2: Indirect control scheme for non-minimum phase plants [4].
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Figure 3: Indirect AIC structure for linear SISO plants [5].

4. Design of DAIC

DAIC structure for controlling stable or stabilized mini-
mum/non-minimum phase linear SISO plants [1] is shown
in Figure 3. In this structure approximate inverse system
𝑄𝐿(𝑞−1) is directly estimated. Control input to plant 𝑢(𝑘) is
synthesized by

𝑢 (𝑘) = 𝑄𝐿 (𝑞−1) 𝑟 (𝑘) . (6)

The online estimation of 𝑄𝐿(𝑞−1) is accomplished using
three steps given below:

(1) Adaptive plant model �̂�(𝑞−1) is obtained using NLMS
adaptive filter.

(2) The mismatch error 𝑒ref (𝑘) between desired response
𝑦𝑑(𝑘) and plant output 𝑦(𝑘) is propagated through
plant model �̂�(𝑞−1).

(3) Output obtained from the second step 𝑒𝑓(𝑘) is used to
adapt the weights of controller which is also anNLMS
adaptive filter.

In this algorithm, the parameters of the controller
𝑄𝐿(𝑞−1) are estimated directly. This means 𝑄𝑅copy(𝑞−1) is
not used. Plant is preceded by the controller. There is no
direct feedback from the plant output. Control scheme is not
strictly feed-forward because controller weights are updated
such that it contains information about the plant output and
reference input. As shown in Figure 4, we identify the plant
as a moving average system (i.e., the plant is approximated
by an adaptive Finite Impulse Response (FIR) filter). Then
for estimation of the adaptive inverse controller parameters,
𝑒𝑓(𝑘) is used as an error signal, where

𝑒𝑓 (𝑘) = �̂� (𝑞−1) 𝑒ref (𝑘) . (7)

DAIC ismuch simpler as compared tomethods presented
in [9, 10]. We use NLMS algorithm to estimate the plant and
the adaptive inverse controller parameters, whereas Jacobian
matrices of network are calculated using dual subroutine and
Back PropagationThroughModel (BPTM) algorithm is used
to adapt plantmodel and constrained controller in [9, 10].The
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Figure 4: Direct adaptive inverse control scheme.

details of parameter estimation and stability analysis of the
proposed DAIC are given in Section 5.

Mean square error (MSE) between desired output and
plant output for non-minimum phase plants can be made
small by incorporating the delay 𝑞−𝐿. Since 𝑄𝐿(𝑞−1) is used
as feed-forward controller for 𝑃(𝑞−1), this gives

𝑄𝐿 (𝑞−1) 𝑃 (𝑞−1) ≅ 𝑞−𝐿. (8)

The parameter 𝐿 is generally kept small for minimum
phase and large for non-minimum phase plants. In simula-
tions, we have observed that choosing 𝐿 ≅ (]+𝑑+𝑚)/2 gives
good tracking in non-minimumphase systems, where ] is the
order of 𝑄𝐿(𝑞−1).

Using 𝑄𝑅(𝑞−1) for 𝑄𝐿(𝑞−1) in IAIC introduces at least
one step delay in the controller parameters. DAIC dwindles
the adhocism of adaptive loop by directly incorporating
an adaptive controller 𝑄𝐿(𝑞−1) in feed-forward loop. Since
plant model is identified first, DAIC is less sensitive to plant
uncertainties and variations. Further, mild nonlinearities at
the output of plant may be learnt by 𝑄𝑅(𝑞−1) in IAIC causing
deviation from desired signal. Using 𝑄𝑅copy(𝑞−1) as left
inverse may not then accomplish tracking as commutability
is lost. DAIC rectifies this deficiency. In DAIC

lim
𝑘→∞

(𝑒ref (𝑘))2 → 0 (9)

provided

lim
𝑘→∞

(𝑒mod (𝑘))2 → 0, (10)

where 𝑒mod(𝑘) = 𝑦(𝑘) − 𝑦(𝑘) and 𝑦(𝑘) is output of estimated
plant �̂�(𝑞−1) given by

𝑦 (𝑘) = 𝜃 (𝑘) 𝜓𝑇 (𝑘) , (11)

where 𝜃(𝑘) is a parameter vector for �̂�(𝑞−1) defined as 𝜃(𝑘) =
[𝛽0, 𝛽1, . . . , 𝛽𝑀] and 𝜓(𝑘) is regression vector defined as
𝜓(𝑘) = [𝑢(𝑘), 𝑢(𝑘 − 1), . . . , 𝑢(𝑘 −𝑀)].

5. Development of Estimation Algorithm for
SISO Systems

In this section, estimation algorithms for linear SISO systems
are developed. Parameter estimation is developed based on
NLMS algorithm.

5.1. Parameter Updating for Plant Model. The parameters
of the plant model �̂�(𝑞−1) are obtained by minimizing the
performance index 𝜙 defined by

𝜙 = 1
2𝑒
2
mod (𝑘) . (12)

Parameters of the plant model should be updated in the
direction of negative gradient as

𝜃 (𝑘 + 1) = 𝜃 (𝑘) − 𝜇1 𝜕𝜙𝜕𝜃 , (13)

where 𝜇1 is the learning rate.
NLMS is self-normalized version of LMS. Convergence

of NLMS is faster than LMS [33]. Due to normalization of
input, NLMS is less sensitive to colored input signal and has
more stable behavior than LMS [34]. The parameter update
equation for the plant model based on NLMS is given below.

𝜃 (𝑘 + 1)

=
{{
{{
{

𝜃 (𝑘) if 𝜓 (𝑘) 𝜓𝑇 (𝑘) = 0,
𝜃 (𝑘) + 𝜇1𝑒mod (𝑘) 𝜓 (𝑘)

𝜓 (𝑘) 𝜓𝑇 (𝑘) if 𝜓 (𝑘) 𝜓𝑇 (𝑘) ̸= 0.
(14)
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Stability Analysis and Error Convergence. For 𝜓(𝑘)𝜓𝑇(𝑘) ̸= 0,
(14) gives

𝜃 (𝑘 + 1) = 𝜃 (𝑘) + 𝜇1𝜓 (𝑘) 𝑒mod (𝑘)
𝜓 (𝑘) 𝜓𝑇 (𝑘) , (15)

𝜃 (𝑘 + 1) = 𝜃 (𝑘) + 𝜇1
𝜓 (𝑘) [𝑦 (𝑘) − 𝜃 (𝑘) 𝜓𝑇 (𝑘)]

𝜓 (𝑘) 𝜓𝑇 (𝑘) , (16)

𝜃 (𝑘) = 𝑞−1𝜇1
1 − (1 − 𝜇1) 𝑞−1

𝜓 (𝑘) 𝑦 (𝑘)
𝜓 (𝑘) 𝜓𝑇 (𝑘) . (17)

[1 − (1 − 𝜇1)𝑞−1] will be a Schur polynomial if 0 <
𝜇1 < 1. This means that (17) is stable; that is, 𝜃(𝑘)
will be bounded if 𝜇1(𝜓(𝑘)𝑦(𝑘)/𝜓(𝑘)𝜓𝑇(𝑘)) is bounded.
The term 𝜇1(𝜓(𝑘)𝑦(𝑘)/𝜓(𝑘)𝜓𝑇(𝑘)) will remain bounded if
𝜓(𝑘)𝜓𝑇(𝑘) ̸= 0. Now convergence of error will be proved. Let

𝑒mod (𝑘) = 𝑦 (𝑘) − 𝑦 (𝑘) , (18)

𝑒mod (𝑘) = 𝑦 (𝑘) − 𝜃 (𝑘) 𝜓𝑇 (𝑘) , (19)

𝑒mod (𝑘 + 1) = 𝑦 (𝑘) − 𝜃 (𝑘 + 1) 𝜓𝑇 (𝑘) . (20)

Subtracting (19) from (20)

𝑒mod (𝑘 + 1) − 𝑒mod (𝑘) = −Δ𝜃 (𝑘) 𝜓𝑇 (𝑘) , (21)

where Δ𝜃(𝑘) = 𝜃(𝑘 + 1) − 𝜃(𝑘). Substituting value of Δ𝜃(𝑘)
from (15) in (20), we get

𝑒mod (𝑘 + 1) − 𝑒mod (𝑘) = −𝜇1𝜓 (𝑘) 𝑒mod (𝑘)
𝜓 (𝑘) 𝜓𝑇 (𝑘) 𝜓𝑇 (𝑘) , (22)

𝑒mod (𝑘 + 1) = (1 − 𝜇1) 𝑒mod (𝑘) (23)

= (1 − 𝜇1)2 𝑒mod (𝑘 − 1) (24)

= (1 − 𝜇1)3 𝑒mod (𝑘 − 2) (25)

= ... (26)

𝑒mod (𝑘 + 1) = (1 − 𝜇1)𝑘+1 𝑒mod (0) . (27)

Taking limits on both sides of (27)

lim
𝑘→∞

𝑒mod (𝑘 + 1) = lim
𝑘→∞

(1 − 𝜇1)𝑘+1 𝑒mod (0) = 0. (28)

Convergence of 𝑒mod(𝑘 + 1) will be satisfied if 0 < 𝜇1 < 1.

5.2. Parameter Updating for Controller Parameters. Param-
eters of controller are obtained by minimizing the perfor-
mance index 𝐽 given by

𝐽 = 1
2𝑒
2
ref (𝑘) ,

𝑒ref (𝑘) = 𝑦𝑑 (𝑘) − 𝑦 (𝑘) ,
𝑒ref (𝑘) = 𝑟 (𝑘 − 𝐿) − 𝑦 (𝑘) .

(29)

Weights of the adaptive controller should be updated in the
direction of negative gradient as

𝜔 (𝑘 + 1) = 𝜔 (𝑘) − 𝜇2 𝜕𝐽𝜕𝜔 , (30)

where 𝜇2 is learning rate and 𝜔(𝑘) is the parameter vector for
controller 𝑄𝐿(𝑞−1) defined as 𝜔(𝑘) = [𝛼0, 𝛼1, . . . , 𝛼𝑁]. Now
finding partial derivative

𝜕𝐽
𝜕𝜔 = 𝜕

𝜕𝜔 (12𝑒
2
ref (𝑘)) , (31)

𝜕𝐽
𝜕𝜔 = −𝑒ref (𝑘) 𝜕

𝜕𝜔 (𝑃 (𝑞−1) 𝑢 (𝑘)) , (32)

𝜕𝐽
𝜕𝜔 = −𝑒ref (𝑘) 𝑃 (𝑞−1) 𝜑 (𝑘) , (33)

where 𝜑(𝑘) is regression vector defined as 𝜑(𝑘) = [𝑟(𝑘), 𝑟(𝑘 −
1), . . . , 𝑟(𝑘 − 𝑁)]. Now final parameter update equation for
controller can be obtained by substituting (33) in (30)

𝜔 (𝑘 + 1) = 𝜔 (𝑘) + 𝜇2𝑃 (𝑞−1) 𝑒ref (𝑘) 𝜑 (𝑘) . (34)

We can replace 𝑃(𝑞−1) in (34) by its adaptive model �̂�(𝑞−1)
because it is shown in Section 5.1 that as 𝑘 → ∞ then 𝑒mod(𝑘+1) → 0. Therefore, (34) becomes

𝜔 (𝑘 + 1) = 𝜔 (𝑘) + 𝜇2𝑒𝑓 (𝑘) 𝜑 (𝑘) , (35)

where

𝑒𝑓 (𝑘) = �̂� (𝑞−1) 𝑒ref (𝑘) . (36)

Since NLMS is used, weight updating for controller is
given by

𝜔 (𝑘 + 1)

=
{{
{{
{

𝜔 (𝑘) if 𝜑 (𝑘) 𝜑𝑇 (𝑘) = 0,
𝜔 (𝑘) + 𝜇2𝑒𝑓 (𝑘) 𝜑 (𝑘)

𝜑 (𝑘) 𝜑𝑇 (𝑘) if 𝜑 (𝑘) 𝜑𝑇 (𝑘) ̸= 0.
(37)

Stability Analysis and Error Convergence for Controller Param-
eters. Now sufficient conditions on 𝜇2 are obtained to ensure
stability of DAIC. 𝑒𝑓(𝑘) can be written as

𝑒𝑓 (𝑘) = 𝜃 (𝑘) 𝐸𝑇ref (𝑘) , (38)

𝑒𝑓 (𝑘)
= 𝜃 (𝑘) [𝑒ref (𝑘) , 𝑒ref (𝑘 − 1) , . . . , 𝑒ref (𝑘 −𝑀)]𝑇 ,

(39)

𝑒𝑓 (𝑘)
= −𝛽0𝑦 (𝑘) − 𝛽1𝑦 (𝑘 − 1) − ⋅ ⋅ ⋅ − 𝛽𝑀𝑦 (𝑘 −𝑀)

+ 𝛽0𝑟 (𝑘 − 𝐿) + 𝛽1𝑟 (𝑘 − 𝐿 − 1) + ⋅ ⋅ ⋅
+ 𝛽𝑀𝑟 (𝑘 − 𝐿 −𝑀) .

(40)
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Substituting (40) in (37)

𝜔 (𝑘 + 1) = 𝜔 (𝑘) − 𝜇2 𝜑 (𝑘)
𝜑 (𝑘) 𝜑𝑇 (𝑘) [𝛽0𝑦 (𝑘)

+ 𝛽1𝑦 (𝑘 − 1) + ⋅ ⋅ ⋅ + 𝛽𝑀𝑦 (𝑘 −𝑀)] + 𝜌 (𝑘) ,
(41)

where

𝜌 (𝑘) = 𝜇2 𝜑 (𝑘)
𝜑 (𝑘) 𝜑𝑇 (𝑘) [𝛽0𝑟 (𝑘 − 𝐿) + 𝛽1𝑟 (𝑘 − 𝐿 − 1)

+ ⋅ ⋅ ⋅ + 𝛽𝑀𝑟 (𝑘 − 𝐿 −𝑀)] .
(42)

Now, (41) can be written as

𝜔 (𝑘 + 1) = 𝜔 (𝑘) + 𝜌 (𝑘) − 𝜇2
⋅ 𝜑 (𝑘)
𝜑 (𝑘) 𝜑𝑇 (𝑘) [𝛽0𝑃 (𝑞−1) 𝜔 (𝑘) 𝜑𝑇 (𝑘)

+ 𝛽1𝑃 (𝑞−1) 𝜔 (𝑘 − 1) 𝜑𝑇 (𝑘) + ⋅ ⋅ ⋅
+ 𝛽𝑀𝑃 (𝑞−1) 𝜔 (𝑘 −𝑀)𝜑𝑇 (𝑘)] .

(43)

Grouping and rearranging the terms of (43), we get

𝜔 (𝑘 + 1)
= 𝜌 (𝑘) + (1 − 𝜇2𝛽0𝑃 (𝑞−1)) 𝜔 (𝑘)

− 𝜇2𝑃 (𝑞−1) [𝛽1𝜔 (𝑘 − 1) + ⋅ ⋅ ⋅ + 𝛽𝑀𝜔 (𝑘 −𝑀)] .
(44)

Using (44), the controller parameter vector can be written as

𝜔 (𝑘) = 𝜌 (𝑘 − 1)
𝐷 (𝑞−1) , (45)

where

𝐷(𝑞−1) = 𝑆 (𝑞−1) + 𝑆1 (𝑞−1) ,
𝑆 (𝑞−1) = 1 − (1 − 𝜇2𝛽0𝑃 (𝑞−1)) 𝑞−1,
𝑆1 (𝑞−1) = 𝜇2𝑃 (𝑞−1) [𝛽1𝑞−2 + ⋅ ⋅ ⋅ + 𝛽𝑀𝑞−𝑀−1] .

(46)

𝑆(𝑞−1) will be Schur polynomial if
1 − 𝜇2𝛽0𝑃 (𝑞−1) < 1,

−1 < 1 − 𝜇2𝛽0𝑃 (𝑞−1) < 1,
0 < 𝜇2𝛽0𝑃 (𝑞−1) < 2.

(47)

To avoid overcorrection, range is given by

0 < 𝜇2𝛽0𝑃 (𝑞−1) < 1. (48)

Further, 𝐷(𝑞−1) is Schur and will remain stable if it is
shown that

𝜇2 𝑃 (𝑞−1)
𝑀

∑
𝑖=1

𝛽𝑖 < 1 − 𝜇2𝛽0𝑃 (𝑞−1) . (49)

Using triangle difference inequality [35] and simplifying,
we get

𝜇2 < 1
𝑃 (𝑞−1) ∑𝑀𝑖=0 𝛽𝑖

,

𝜇2 < 1𝑃 (𝑞−1) |𝜃 (𝑘)|
.

(50)

Controller output will remain bounded if 𝜇2 is chosen
such that 0 < 𝜇2 < 1/|𝑃(𝑞−1)||𝜃(𝑘)|. |𝑃(𝑞−1)| and |𝜃(𝑘)| can be
found online and incorporated as learning rate, butwe choose
small learning rate for controller in order to avoid instability.
To be more conservative if 𝜇2 > 1, then we use 0 < 𝜇2 < 1.
Now convergence of error will be proved. Let

𝑒ref (𝑘) = 𝑦𝑑 (𝑘) − 𝑦 (𝑘) , (51)

𝑒ref (𝑘) = 𝑟 (𝑘 − 𝐿) − 𝑃 (𝑞−1) 𝜔 (𝑘) 𝜑𝑇 (𝑘) , (52)

𝑒ref (𝑘 + 1) = 𝑟 (𝑘 − 𝐿) − 𝑃 (𝑞−1) 𝜔 (𝑘 + 1) 𝜑𝑇 (𝑘) . (53)

Subtracting (52) from (53), we obtain

𝑒ref (𝑘 + 1) − 𝑒ref (𝑘)
= −𝑃 (𝑞−1) (𝜔 (𝑘 + 1) − 𝜔 (𝑘)) 𝜑𝑇 (𝑘)

(54)

= −𝑃 (𝑞−1) Δ𝜔 (𝑘) 𝜑𝑇 (𝑘) . (55)

Using (35) and (55), the following relationship is obtained

𝑒ref (𝑘 + 1)
= (1 − 𝜇2𝑃 (𝑞−1) �̂� (𝑞−1)) 𝑒ref (𝑘) 𝜑 (𝑘) 𝜑𝑇 (𝑘) .

(56)

Equation (56) will be asymptotically stable; that is,
lim𝑘→∞𝑒ref (𝑘 + 1) = 0, if 𝜇2 is chosen such that 0 < 𝜇2 <
1/|𝑃(𝑞−1)||𝜃(𝑘)|. NLMS adaptive filters are inherently stable
and are used for plant estimating the parameters of the plant
and controller. Output of controller remains bounded as long
as 𝜇2 is kept small. Since a bounded input is applied to the
plant and stable adaptive filters are used in conjunction with
the stabilized plant, the controller output remains bounded.

6. Simulation Results

Computer simulations of DAIC and IAIC schemes are
presented to show effectiveness of DAIC. Two linear non-
minimumphase systems are chosen, onewithout disturbance
and other with disturbance.

6.1. Example 1. A disturbance free discrete time non-
minimum phase linear plant is chosen having

𝑦 (𝑘) = 𝑞−1 1 + 1.2𝑞−1
1 + 0.5𝑞−1 + 0.1𝑞−2 𝑢 (𝑘) . (57)

This is a stable non-minimum phase plant having zero at
−1.2000 and poles at −0.2500 ± 0.1936i. In this example, we
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Figure 5: Tracking desired output: first 1 sec.
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Figure 6: Tracking desired output: amplitude −1.2∼1.5.

choose 𝜇1 = 0.1 and 𝜇2 = 0.01. Similarly learning rate for
IAIC is chosen as 0.01. Orders of 𝑄𝑅(𝑞−1) and 𝑄𝐿(𝑞−1) are
chosen as 10. Sampling time is chosen as 0.001 sec. Simulation
results are depicted in Figures 5–12. Zoomed preview for
desired output tracking is shown in Figures 5 and 6. Plant
output in DAIC has less overshoot and converges to desired
output quickly compared to IAIC. Tracking error is shown
in Figures 7 and 8. Tracking error has less amplitude and
converges to zero faster in DAIC compared to IAIC. MSE for
IAIC and DAIC is shown in Figures 9 and 10. MSE is less for
DAIC compared to IAIC. Control input is shown in Figure 11.

Indirect AIC 
DAIC

−5

−4

−3

−2

−1

0

1

A
m

pl
itu

de

0.2 0.4 0.6 0.8 10
Time

Figure 7: Tracking error: first 1 sec.
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Figure 8: Tracking error: amplitude −1∼1.

Control input for DAIC converges quickly compared to IAIC.
Model identification error 𝑒mod(𝑘) in DAIC converges to zero
very quickly and is shown in Figure 12.

6.2. Example 2. A disturbance 𝑛(𝑘) is added to discrete time
non-minimum phase linear plant. Now, plant output can be
written as

𝑦 (𝑘) = 𝑞−1

⋅ 1 − 3𝑞−1 + 3.5𝑞−2
1 + 0.05𝑞−2 + 0.05𝑞−3 + 0.02𝑞−4 (𝑢 (𝑘) + 𝑛 (𝑘)) .

(58)
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Figure 9: Mean square error: first 2 sec.
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Figure 10: Mean square error: amplitude 0∼0.5.

This is a stable non-minimum phase plant having zeros
at 1.5000 ± 1.1180i and poles at 0.2500 ± 0.3708i and −0.2500
± 0.1936i. Here, 𝑛(𝑘) is disturbance added to the plant and is
shown in Figure 13. In this example, we choose 𝜇1 = 0.01
and 𝜇2 = 0.01. Similarly learning rate for IAIC is chosen
0.01. Sampling time is chosen 0.001 sec. Simulation results are
shown in Figures 14–16.

Control input is depicted in Figure 14. Control input for
DAIC is synthesized such that plant tracks desired output
even in the presence of disturbance. Desired output tracking
for DAIC is shown in Figure 15. Plant output not only
converges to desired output but good disturbance rejection is
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Figure 11: Control input.
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Figure 12: Model identification error in DAIC.
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Figure 13: Disturbance.
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Figure 14: Control input in DAIC.
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Figure 15: Desired output tracking in DAIC.

also achieved in DAIC. Plant output in IAIC does not follow
desired output and is depicted in Figure 16.

7. Experimental Results

The proposed scheme is implemented on laboratory scale
temperature control of a heating process, speed, and position
tracking of direct currentmotor.The temperature control of a
process is a non-minimum phase system while the speed and
position control of a DC motor is a minimum phase system.
To accomplish the adaptive tracking, the proposed DAIC
does not require a prior information of the system phase.
In these experiments, a standard IBM PC-type Pentium IV
is used for the computation in real time. Data acquisition is
accomplished byNational Instrument cardNI-6024E and the
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Figure 16: Desired output tracking in IAIC.

controller is implemented in SIMULINK real-time windows
target environment. The computations are performed in
floating-point format and the sampling interval is selected as
0.001 sec.

7.1. Temperature Control of Heating Process. In this experi-
ment, we use process trainer PT326 manufactured by Feed-
back Ltd., UK. This process is composed of a blower, a
heating grid, tube, and temperature sensor (bead thermistor).
A variable power supply provides power to the heater.
This power can be controlled by initiating an appropriate
controlling signal from the computer. The process can be
considered as a second-order time delay system.This is a non-
minimum phase system. Input of the process is power and
output is the temperature of air at somedesired location in the
process tube. This is a time delay system. In this experiment
10 parameters are selected for the plant estimation and 30 for
inverse of the plant. The proposed DAIC does not provide a
procedure for the selection of optimal number of the plant
and the controller parameters. However, the control input,
plant output, and the tracking error remain bounded for
any selected number of these parameters. Experimental and
simulations studies show that large number of parameters
achieves better tracking at the cost of computational burden.
Figure 17 shows that output (temperature) of the process
converges to the desired temperature quickly. Control input
to the plant is smooth and bounded. Control signal is
depicted in Figure 18.

7.2. Speed and Position Control of DC Motor. In this experi-
ment, we use modular servo system (MSS) manufactured by
Feedback Ltd., UK. All the modules used in this experiment
are parts of MSS. MT150F is a module containing DC motor
and tacho-generator. PS150E is the power supply and SA-
150D is a servo amplifier. Control input to the servo amplifier
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Figure 17: Temperature control of heating process.
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Figure 18: Control input to heating process.

is through a preamplifier PA150C. In the speed control exper-
iment the speed signal is measured by the tacho-generator.
This generatormeasures the speed in±10 volts corresponding
to ±1800 rpm. Figure 19 show that themotor speed converges
to the desired speed. There are some large spikes in the
estimated speed but the actual speed of the motor is quite
smooth. It can be observed that the speed control in the
vicinity of the dead zone is also accomplished. Speed control
of such systems at low speed is known be a difficult problem.
The control input is shown in Figure 20, which is bounded
and smooth. Module OP150K is used to measure the position
of the motor shaft. This module measures the shaft position
in the range 0–10 volts corresponding to 0–360 degrees.
Figure 21 shows that the motor shaft follows the desired
position smoothly and quickly. Figure 22 shows that control
input is smooth and bounded.

0 20 40 60 80 100
−4

−3

−2

−1

0

1

2

3

4

Time (seconds)

Ta
ch

om
et

er
 o

ut
pu

t (
vo

lts
)

Desired speed
Motor speed
Estimated speed

Figure 19: Speed control of DC motor.
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Figure 20: Control input to speed control system.

8. Conclusion

Stability and convergence of DAIC are discussed in detail.
Simulation results show that DAIC performs better than
IAIC in terms of mean square tracking error and disturbance
rejection.The stability of the closed loop is discussed in detail.
The convergence of the error to zero and the boundedness of
the controller parameters are proved. However, an algorithm
to determine the optimal number of the estimated plant
and the controller parameters is needed. Laboratory scale
experiments show that DAIC accomplishes tracking of the
plant output to the desired smooth trajectory. The synthe-
sized control input in simulations and experiments remains
smooth and bounded.
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Figure 21: Position control of Dc motor.
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Figure 22: Control input to position control system.
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